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Abstract
Predicting outcomes in hospital Intensive Care Units (ICU) is an important and rapidly growing

field. Many hospitals have begun to use an array of statistical learning methods to increase accuracy in
these calculations. Anticipating patient outcomes is meaningful for hospitals’ partitioning of scarce
resources to deliver the best quality and mode of care for each patient. In this report, we employ linear,
logistic, and quartile regression models, random forests, and K-nearest neighbor classification to predict
mortality, length of stay, and liver disease in the ICU. In our best performing logistic regression model on
mortality, we achieve 79.8% accuracy, observing 62.9% mortality within 2 years (731 days) for the high
risk group and observed mortality of 13.9% in the low-risk group. We achieve 94.7% accuracy in
predicting liver disease in patients, with 25.9% incidence of liver disease in patients predicted to have
liver disease and 1.6% incidence of liver disease in patients predicted to be healthy.



I. Introduction
Intensive care units (ICU) provide complex and resource-intensive treatment for the sickest

hospitalized patients. The need for critical care medicine has grown substantially over the past decade and
has consumed a huge portion of the income in many countries worldwide (Vincent et al, 2014). In 2010,
critical care units represented 13.2% of hospital costs, 4.1% of national health expenditures, and 0.72% of
U.S. gross domestic product (Halpern et al 2010). Length of stay in the ICU is the primary predictor
associated with ICU cost, as a small percentage of patients with a prolonged length of stay in the ICU
could consume a large proportion (nearly 50%) of ICU resource use (Rapoport et al 1990, Rapoport et al
1994, Evans et al, 2018). Effective prediction tools are strongly needed by clinical staff to adequately
manage patient and budget stress.

Intensive care unit (ICU) patient monitoring has the potential to reduce complications and
morbidity, and to increase the quality of care by enabling hospitals to deliver higher-quality, cost-effective
patient care, and improve the quality of medical services in the ICU (Alghantani et al 2021). Additionally,
it is a patient-centered outcome and therefore of interest to families, ICU personnel, and managers (Peres
et al 2021). The ICU is among the most resource intensive units in hospitals, so ICU surveillance has the
potential to reduce morbidity and plan for improvement of care. There is therefore a demand for ICU
monitoring that can provide guidance and report when adverse medical events are anticipated (Alghatani
et al 2021). Currently, ICU length of stay is used retrospectively to evaluate ICU efficiency. Patient length
of stay prediction at admission could help coordinate care, implement preventative measures, and better
communicate with managers, families (Peres et al 2021).

With prolonged patient stays in the ICU, the burden of care for critically ill patients is massive
(Young et al 2000). Given the role of the ICU in providing intensive and specialized nursing and
medicinal care for critically ill patients and sustaining life during periods of life-threatening organ system
insufficiency, it is unsurprising that ICU’s contain the highest mortality rate of any unit of the hospital
(Marshall et al 2017). Each year, about 500,000 out of 4 million patients entered into Intensive Care Units
(ICU) pass away (Angus et al 1996, Wu et al 2002, Young et al 2000). In cases of severe illness, patients
have an extraordinarily difficult choice to make. Patients can undergo intensive care, described above, to
make every attempt to save their life, or they can request palliative care, which provides end of life care
aimed at improving the quality of life for patients and their families (World Health Organization). Since
early and frequent conversations over end of life treatment plans for patients suffering from serious
conditions leads to increased satisfaction and quality of life stemming from care consistent to the patient’s
desire, many hospitals have begun implementing machine learning-informed algorithms derived from
patient data to inform doctors of patients survival chances and spur these conversations (Wright et al
2008, Brinkman-Stoppelenburg et al 2014, Parikh et al 2021). Predicting mortality in patients hospitalized
in ICU is crucial for assessing severity of illness and adjudicating the value of novel treatments mentioned
above, interventions, and health care policies. Machine learning can utilize important baseline information
that can be acquired in a timely manner and therefore serve as accurate predictors in our ICU length of
stay calculation. When scaled to all patients that visit ICUs daily, massive amounts of data make it
feasible to develop predictive models that can help with management.

A Penn Medicine study examining the effect of an electronic nudge to doctors flagging patients
who were at a high risk of death and would benefit from conversations surrounding end of life goals
found a significant increase in the prevalence of these conversations between patients with doctors who
received the nudge, in comparison to patients with doctors who were in the control group. Additionally,
doctors in the test group still engaged in end of life conversations with patients who were flagged as low



mortality risk about 75% more regularly than doctors in the control group (Parikh et al 2019). Even in
cases where patients are likely to survive, these conversations are important for doctors and patients to
coordinate and plan the best care possible for the patient. In Section III of this paper, we build models
which, similar to Penn Medicine, predict end of life outcomes for patients. We compare our models with
Penn Medicine’s models in the discussion.

While patients are admitted to the ICU with significant, typically life threatening injuries, many
also enter with significant comorbidities. A patient admitted for a car crash injury may also unknowingly
have kidney disease, which could result in complications in treatment or sub-par recovery. Adverse events
and clinical complications are a major cause of mortality and poor outcomes in patients, and substantial
effort has been made to improve their recognition (Tomašev 2018). Unfortunately, few predictors have
found their way into routine clinical practice because they either lack effective sensitivity and specificity.
For example, liver disease can only be positively diagnosed after extensive testing (ultrasound, CT scan,
or MRI) or a liver biopsy (Mayo Clinic). These tests may not be performed rapidly upon a patient’s arrival
in the ICU, if the attending physician decides to have them performed at all, but as established above, the
identification of these conditions can be critical. One medical review of car crash victims noted that
conditions including other medical maladies could result in missed injuries (Garcia 2006).

The relevancy of ICU patients with various additional conditions remains after being released
from the ICU. A 2010 study that followed 478 ICU patients found that preexisting conditions were
associated with the majority of cases that experienced diminished quality of life after being released from
the ICU (Orwelius et al.). Our hope is to use easily gathered patient information to predict which patients
have pre existing medical conditions. This information could help ICU doctors identify patients that might
have complicating factors, and more deliberately order tests for those conditions to better inform their
treatment.

We aim to address these motivating questions of mortality, ICU stay, and pre-ICU conditions
through rigorous application of statistical learning models. Due to the muli-faceted nature of our dataset,
numerous models should be used in tandem to produce robust and accurate classification. These
approaches allow us to thoroughly assess clinical features most commonly associated with our questions
of interest.

II. Methods
We used a 1,776 patient subset of the 26,870 patient MIMIC-II dataset, which was constructed

from the ICUs of Beth Israel Deaconess Medical Center between 2001 to 2008. The MIMIC-II (‘Medical
Information Mart for Intensive Care’) dataset is a large, single-center database comprising information
relating to patients admitted to critical care units at a large care hospital. Data includes vital signs,
medications, laboratory measurements, observations and notes charted by care providers, fluid balance,
procedure codes, diagnostic codes, imaging reports, hospital length of stay, survival data, and more. Our
subset of data contains 46 variables extracted from MIMIC-II, including demographics (e.g. age, weight),
clinical observations collected during the first day of ICU stay (e.g. white blood cell count, heart rate),
and outcomes (e.g. 28 day mortality and length of stay).

To clean our data, we imputed the median value for continuous numerical variables and the mode
observation for factor variables in place of NA observations. We then iterated over the dataset 20 times,
constructing a random forest and used the resulting proximity to repeatedly impute the NA values for a



more accurate estimate of the unknown data. Finally, we removed certain variables with obvious
covariance, including hosp_exp_flg, icu_exp_flg, day_28_flg from the data, as in many cases incidences
of mortality were indicated in multiple categories. We also removed mort_day_censored, since it was an
extension of censor_flg, where observations under 730 indicate death and observations over 730 indicate
survival.

- Variables of interest:
- aline_flg: IAC used (categorical, 1 = year, 0 = no)
- icu_los_day: length of stay in ICU (days, quantitative)
- hospital_los_day: length of stay in hospital (days, quantitative)
- age: age at baseline (years, quantitative)
- gender_num: patient gender (1 = male; 0=female)
- weight_first: first weight, (kg, quantitative)
- bmi: patient BMI, (quantitative)
- sapsi_first: first SAPS I score (quantitative)
- sofa_first: first SOFA score (quantitative)
- service_unit: type of service unit (character: FICU, MICU, SICU)
- service_num: service as a quantitative (categorical: 0 = MICU or FICU, 1 = SICU)
- day_icu_intime: day of week of ICU admission (character)
- day_icu_intime_num: day of week of ICU admission (quantitative, corresponds with

day_icu_intime)
- hour_icu_intime: hour of ICU admission (quantitative, hour of admission using 24hr

clock)
- hosp_exp_flg: death in hospital (categorical: 1 = yes, 0 = no)
- icu_exp_flg: death in ICU (categorical: 1 = yes, 0 = no)
- day_28_flg: death within 28 days (categorical: 1 = yes, 0 = no)
- mort_day_censored: day post ICU admission of censoring or death (days, quantitative)
- censor_flg: censored or death (categorical: 0 = death, 1 = censored)
- sepsis_flg: sepsis present (categorical: 0 = no, 1 = yes -- absent (0) for all)
- chf_flg: Congestive heart failure (categorical: 0 = no, 1 = yes)
- afib_flg: Atrial fibrillation (categorical: 0 = no, 1 = yes)
- renal_flg: Chronic renal disease (categorical: 0 = no, 1 = yes)
- liver_flg: Liver Disease (categorical: 0 = no, 1 = yes)
- copd_flg: Chronic obstructive pulmonary disease (categorical: 0 = no, 1 = yes)
- cad_flg: Coronary artery disease (categorical: 0 = no, 1 = yes)
- stroke_flg: Stroke (categorical: 0 = no, 1 = yes)
- mal_flg: Malignancy (categorical: 0 = no, 1 = yes)
- resp_flg: Respiratory disease (non-COPD) (categorical: 0 = no, 1 = yes)
- map_1st: Mean arterial pressure (mmHg, quantitative)
- hr_1st: Heart Rate (quantitative)
- temp_1st: Temperature (F, quantitative)
- spo2_1st: S_pO_2 (%, quantitative)
- abg_count: arterial blood gas count (number of tests, quantitative)
- wbc_first: first White blood cell count (K/uL, quantitative)



- hgb_first: first Hemoglobin (g/dL, quantitative)
- platelet_first: first Platelets (K/u, quantitativeL)
- sodium_first: first Sodium (mEq/L, quantitative)
- potassium_first: first Potassium (mEq/L, quantitative)
- tco2_first: first Bicarbonate (mEq/L, quantitative)
- chloride_first: first Chloride (mEq/L, quantitative)
- bun_first: first Blood urea nitrogen (mg/dL, quantitative)
- creatinine_first: first Creatinine (mg/dL, quantitative)
- po2_first: first PaO_2 (mmHg, quantitative)
- pco2_first: first PaCO_2 (mmHg, quantitative)
- iv_day_1: input fluids by IV on day 1 (mL, quantitative)

(SEE CODE FOR MORE METHOD EXPLANATION)
To predict mortality, we first test and compare the accuracy of models built using

KNN-Classification, Random Forest, and Logistic Regression on the entirety of the data set. We chose
censor_flg(, a binary variable where 1 indicates censoring, or survival, of the patient and 0 indicates death
within 730 days (2 years), as our target predictor.

For KNN-Classification, we filter out all factor variables, including gender and incidences of
stroke, congestive heart failure, and chronic obstructive pulmonary disease, since this method of modeling
is based on the “distance” between two observations and it is impossible to find the distance between
factor observations. We then split the data into train and test sets, and then performed 10-fold cross
validation on the training set in order to obtain the optimal nearest neighbors, which was determined to be
12. We then fit a 12NN-Classification model on the entire training set, which was then used to make
predictions on the test set. To assess the accuracy of our predictions, we create a confusion matrix to
observe the overall accuracy, sensitivity, and specificity of the model.

For Logistic Regression, we omitted studying sepsis (sepsis_flg) from the model, as no patients in
the data set contracted sepsis . We then split the data into train and test sets, with 70% of data in the
training set and 30% in the test set. We fit a general linear model using logistic regression on the training
set, which was then used to make predictions on the test set. The predictions take the form of a vector of
probabilities, between 0 and 1, based on the determined likelihood of the observation being predicted as
Censored. To determine which observations to classify as “Censored” and which to classify as “Death”,
we graph a receiver operating characteristic (ROC) curve, which maps the sensitivity vs specificity of the
model. We use the ROC curve to determine the Youden index, or the ideal threshold to maximize
sensitivity and specificity in the model. Observations above the Youden index are then classified as
“Censored,” and below are classified as “Death.” Again, we assess the accuracy of our predictions
through a confusion matrix.

Predicting mortality with a random forest follows a similar process, where we split the data into a
training and test set, with 70% of data in the training set. We then fit a random forest model on the
training set, which is then used to make predictions on the testing set. We compute accuracy, sensitivity,
and specificity to assess our model’s performance.

In this paper, we consider the observations of patients for which our models predicted mortality to
be “high-risk,” and observations for patients for which our model predicted survival to be “low-risk.” As
such, sensitivity, which is generally the accuracy in predicting mortality, can be interpreted as the
percentage of high-risk patients who passed away, which we describe as the observed mortality for the



high risk group. Similarly, specificity can be interpreted as the percentage of low-risk patients who are
deceased, which we describe as the observed mortality for the low-risk group. To assess the overall
performance of our models, we will compare their accuracy, sensitivity, and specificity, both amongst
each other and against the literature.

Finally, we split the data set in half, with observations of patients above the median age placed in
one data set, and observations of patients below the median age placed in a separate data set. We then
follow similar processes as above to fit models using logistic regression and random forests on each data
set.

III. Results (SEE CODE FOR FULL RESULTS + EXPLANATION)
In our data set, there was an observed 72% survival rate and a 28% mortality rate (n = 1776, see

Table 1). In the KNN Classification model (Table 2), overall accuracy was 78.4%, with observed 2 year
mortality in the high-risk group of 50.5% and observed mortality in the low risk group of 11.2%. In the
logistic regression model, overall accuracy was 80.3%, with an observed 2 year mortality of 70.5% in the
high risk group and 15.9% in the low risk group. The random forest model performed with the same
overall accuracy as the logistic regression model, but the random forest outperformed the logistic
regression model in the low risk group, with only 9.9% incidence of mortality within 2 years, but
performed slightly than logistic regression in predicting the high-risk group, observing 55% 2 year
mortality. All three models significantly outperformed random assignment to “Survival” and “Death”
based on data means.

The random forest (Figures 1-3) and logistic regression models (Table 3) also grant insight into
the most important variables in predicting mortality. We find that age, stroke, malignant cancer presence,
sapsi score, and blood urea nitrogen levels are most important to the accuracy of the random forest model,
while blood urea nitrogen, sapsi score, and white blood cell count are most important for the homogeneity
of the nodes and leaves. In the logistic regression model, some notable statistically significant variables
include age, gender, incidence of stroke, cancer, and chronic obstructive pulmonary disease, and blood
urea nitrogen, albeit with a small coefficient. It is notable that MeanDecreaseAccuracy and the logistic
regression models tend to hold factor variables such as incidence of stroke in higher regard, while
MeanDecreaseGini tends to prioritize continuous variables.

In all models, however, the importance of age in predicting mortality is undeniable. Due to the
strong response of predicting mortality as a result of old age, we split the data into two age groups,
“young” and “old,” based on the median age (56.3 years) in the data set, in order to make predictions
more accurately in different age brackets. For both logistic and random forest models, we achieve
moderately better mortality prediction for the old age group (mean age = 72.3, mortality rate = 46.3%,
N=888) but suffer losses in overall accuracy and prediction of survival. In the young age group (mean
age= 36.4, mortality rate = 9.7%, N = 888), we achieve higher accuracy and superior prediction of
survival, but the observed 2 year mortality for the high risk group falls significantly, to 22.7% in the linear
regression model and just 9.1% in the random forest model.





Table 2. Accuracy in Mortality Models

KNN Classification Logistic Regression Random Forest

Model Accuracy 78.0% 80.3% 80.3%

Specificity
(Predicting Survival)

89.6% 84.1% 90.1%

Sensitivity (Predicting
Mortality)

47.4% 70.5% 55.1%

Table 3. Accuracy in Age Delimited Data

Logistic Regression Random Forest

Old Young Old Young

Model Accuracy 70.4% 89.5% 68.5% 92.1%

Specificity
(Predicting
Survival)

67.9% 95.5% 70.1% 99.6%

Sensitivity
(Predicting
Morality)

72.9% 22.7% 66.9% 9.1%

Figure 1. Variable importance plot for random forest predicting mortality

Figure 2. Partial dependence plot (PDP) for age on death



Figure 3. PDP for blood urea nitrogen on death



Model (1) is the full logistic regression . Model (2) is the logistic regression model on the old-age group
and model (3) is the logistic regression model on the young group.



IV. Discussion
The goal of our project was to assess whether a troupe of machine learning techniques offer any

advantages to predicting length of stay, mortality, and pre-ICU conditions. Health professionals can
benefit from advanced accurate predictions of ICU patient monitoring to adequately make stronger
decisions on challenges in managerial health care. Poor management can result in patient rejection due to
bed scarcity, loss of resources and manpower, and reduction in hospital revenue and quality of service
(Schmidt et al 2013). Integrating machine learning models into intelligent ICU patient monitoring can
have several beneficial implications. These implications were explored in three main questions: ICU
length of stay, patient mortality, and pre-ICU conditions. Receiving more informed decision making in
these areas can result in reductions in unwanted medical situations.

As we assumed, there was not a clear linear relationship between ICU length of stay and our
variables of interest. Support vector regression worked well with our unstructured data, as did a random
forest that fit our entire dataset. The models allowed us to observe variables that contributed differences to
patients with increased length of stay. Variables such as the abg_count, age, and the service unit were
statistically significant predictors of increased ICU stay. All models produced rmse values that indicated
increases in prediction accuracy (in the scope of the range of our data, compared to random
classification). Gaining full access to the dataset and filtering for patients that stayed beyond 5 days could
allow exclusion of patients who passed away in the ICU and therefore more precise data points. A larger
sample size would additionally assist in more accurate prediction. When split, our testing dataset for long
length of stay contained 46 observations; to truly analyze the performance of a model we would need
more observations among long stay patients to see why they remain in the ICU for a longer period of
time.

In a study similar to ours, researchers at the University of Pennsylvania predicted mortality for
cancer patients within the Penn Medicine oncology practices. Using random forest algorithms, this study
observed 500 day mortality of 64.4% in the high risk group and 7.6% mortality in the low risk group
(logarithmic regression and gradient boosting algorithms were also employed, but only results for the
random forest model are published) (Parikh et al 2019). Our best mortality prediction model, using
logistic regression, observed 2 year mortality of 70.5% in the high risk group and 15.9% in the low risk
group. These models both aim to predict mortality in order to assist in providing the end of life care that
the patient desires. Since classifying someone as in the high risk group increases the likelihood of
introducing conversations surrounding end of life care, and therefore a choice to choose palliative care,
we consider it more important to classify the high-risk group correctly. As such, we consider our model
to have outperformed Penn Medicine’s.

We also view logistic regression as advantageous over other models due to the ease of modifying
the threshold between “Censored” and “Death.” In this report, we use the Youden index for this threshold
in order to maximize both sensitivity and specificity, which resulted in a threshold of 0.5866, which
means that observations had to have at least a 58.6% chance of survival to be classified by the model into
the low-risk group. Admittedly, this is a pretty high threshold for this classification; in the future,
hospitals could choose a lower threshold in order to increase certainty for classification into the high risk
group.

One important variable that we included in our model is the Simplified Acute Physiology Score
(I) predictor, which is formed from the collection of 14 physiological variables collected within 24 hours
of admittance to the ICU to indicate the risk of death (Le Gall et al. 1984). While many of these variables
are also included in the general dataset that we use in this paper, we keep SAPSI and view it as an



interaction term between the variables that form the score. Using the formula by Le Gall et al. 1993, we
mutate a SAPSI mortality prediction into our dataset. Since the maximum predicted mortality derived
through this formula was under 20%, we claim that our models outperform this score calculator.
However, due to the relative importance of SAPSI in predicting in random forests, we still support the
collection of this metric for use in machine learning algorithms to predict mortality.

Our efforts to predict ICU pre-conditions with easily gathered medical metrics yield
disappointing results. Both our logistic regression model and our random forest model had high accuracy
(94.7% and 98.4% respectively) and specificity (98.4% and 99.8% respectively), but underwhelmed with
low sensitivity scores (25.9% and 7.4% respectively). Catching positive cases of liver disease is important
in an ICU setting where it can cause complications, so we hoped for a higher sensitivity.

Fortunately, our results appear in line with similar research. Previous efforts to predict liver
disease in patients achieved a positive predictive rate between 20% and 30%, similar to our logistic
regression model (McLernon 2014). It is possible that liver disease is simply too difficult to predict with
great certainty. However, the optimal decision threshold for our logistic regression model of 0.07 yielded
a sensitivity of 70%. This result is exciting given the significant improvement in sensitivity compared to
our other models, but the low decision threshold and lower specificity of 85% does make us wonder if the
higher performance is reflective of a good model or merely an incredibly low decision threshold. Still, our
results do suggest that there might be hope for doctors and researchers attempting to identify patients that
might have liver disease or other comorbidities.

Additionally, the limited MIMIC-II data that we were using only had 99 cases of liver disease.
This may constrain our ability to properly train and test the model. Getting access to MIMIC-IV would
greatly increase the amount of data we had to work with and increase the number of observations we
could train and test our model on. Additionally, we only used two predictive methods for this research
question. Focused study on predicting liver disease would allow for more predictive methods to be used.
One of these other methods may prove superior to the ones we used. Finally, we selected live disease in
part because it is a difficult comorbidity to diagnose. Applying our same work to a different comorbidity
contained in the dataset might produce different results. Testing our process on different diseases would
be an interesting extension of this research. In sum, we are unable to confidently predict comorbidities
that ICU admittance may have with our current models; however, our work does suggest that this line of
research could be fruitful if further pursued.

As is with many real world applications, the best result from a model will depend on the data
used. When wrangling data, it was crucial to extract covariates, but extraction of any variables must be
done with caution because excluding relevant features in advance may generate sub optimal results.
Furthermore, many variables interact with cloud data. For example, more severe patients tend to have
longer lengths of stay, but the sickest patients are also those at higher risk of death which will decrease
the LOS. Having access to a full dataset, we could filter for patients who stayed beyond 5 days in the
ICU, thus eliminating patients who passed shortly after admission, and examine what predicts longer
stays in these patients. We additionally predicted mortality after two years; in many cases, hospitals are
interested primarily in 6 month mortality. We also used the MIMIC database which represents a subset of
a patient population from a singular hospital in Boston, and does not generalize to other populations or
hospital systems in other areas across the United States and rest of the world. Additionally, machine
learning algorithms to predict patient mortality typically utilize much larger patient databases with a
wider array of variables. Finally, our data contained no observations of sepsis, which is a primary target
to either prevent or predict using machine learning since sepsis management is highly time sensitive in



order to prevent mortality (Goh et al. 2021). It is unrealistic that there are incidences of sepsis at Beth
Israel Hospital, so obtaining and training models on data containing sepsis is critical for future research to
understand how sepsis affects patients in hospitals and the ICU.

Future directions and extensions of this research will involve extending the scope beyond Beth
Israel Medical center, using holistic data to make broader optimal clinical intervention decisions. This
research project thus lays a foundation for the future application of 3 patient related prediction models in
ICU clinical practice.
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